Support Vector Machines

A support vector machine (SVM) is a supervised machine learning model which can be used for both classification and regression. But they have been extensively used for solving complex classification problems such as image recognition, voice detection etc. SVM algorithm outputs an optimal hyperplane that best separates the tags. The hyperplane is a boundary that…

Continue reading

ROC Curve and AUC

ROC curves and AUC are used to measure performance in machine earning. They are the most widely used evaluation metrics for checking any classification model’s performance. It tells how much the model is capable of distinguishing between classes. ROC (Receiver Operator Characteristic Curve) is a probability curve and AUC represents the…

Continue reading

Random Forest

Random Forest is a supervised algorithm and an ensemble learning method that constructs a multitude of decision trees during training and outputs the class that is the mode of the classes (classification) or the mean prediction (regression) of the individual trees. It is known for its flexibility and is used…

Continue reading

Gini Index

In Decision Tree, the major challenge is the identification of the attribute for the root node in each level. This process is known as attribute selection. There are two popular attribute selection measures: Gini Index Information Gain Gini Index calculates the amount of probability of a specific feature that is…

Continue reading

Decision Trees

The decision tree algorithm is one of the most widely used algorithms in Machine Learning. It is a supervised learning algorithm. A decision tree uses a tree-like model to make predictions. It resembles an upside-down tree. A decision tree builds classification or regression models in the form of a tree…

Continue reading

Naive Bayes

Naive Bayes is a very popular Supervised Classification algorithm. This algorithm is called “Naive” because it makes a naive assumption that each feature is independent of other features. It is near to impossible to find such data sets in real life. Bayes’ theorem is the base for Naive Bayes Algorithm….

Continue reading

Logistic Regression

Logistic Regression is a supervised classification algorithm that is used to predict the probability of a categorical dependent variable using a given set of independent variables. It is a predictive analysis algorithm and based on the concept of probability. The most common use of logistic regression models is in binary classification problems. Some…

Continue reading